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Abstract. Driving behavior emerges from the intricate and complex interactions
between the driver, the vehicle and the environment. The purpose of a behavioral
model is to explain and to predict the human behavior. For the construction of this
kind of models, mathematical and Artificial Intelligence techniques have been
tested. Some constraints of the system are 1) the supervision and monitoring of
the driver-vehicle-environment system is a complex problem due to particularities
such as stochastic, personal and dynamic. 2) The solution must be based on a non-
intrusive system and 3) able to diagnose and predict hypovigilance from
peripheral on-board sensors. The proposed diagnosis system is based on
intelligent signal processing algorithms and real time methodologies as the
Wavelets analysis and the Support Vector Machines learning approach for density
cstimation. In this paper, we search to accomplish the requirement of a faster and
robust algorithm, able to work in real time. Results are validated using driver’s
data in real conditions. The framework of this study is the European research
project SENSATION.

1. Introduction

Human factors, as excessive fatigue, extended inattention or stress, have been the key
cause of many industrial accidents. Most nuclear accidents (Chernobyl, Three-mile
Island and several US islands), the Challenger explosion, 40% of road accidents and,
according with the NASA., approximately 21% of the aviation incidents are fatigue
related, [1].

Driving is a complex behavior influenced by a wide range of factors in space and
time. Factors include goals, distraction, crrors, expectancies, workload, attention,
traflic, vehicle safety features, automation level, fatigue. memory, capabilities, training
and experience. Driving behavior is conceptually considered as a complex system in
which the environment, driver and vehicle are influencing factors. An emerging driving
behavior could not necessary be linearly predicted. However, a context-aware system
could assist the driver in augmenting the probability of undertaking a safe behavior. To
detect drowsiness in a human being, physiological measures, such as brain activity, can
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-despite their accuracy is the
unobtrusive techniques
rs to drowsiness at least

be used. The main disadvantage of this kind of measures
contact requirement with the driver. For automotive systems,
must be used. Further. the ideal system will detect the precurso
several minutes before onset. giving the driver time to rest or take another action. In
order to monitor both the driver and the road environment to detect hypovigilance in
real-time, it is necessary to integrate multiple parameters. Information on the road
environment, personalized driver characteristics and advanced detection techniques

must be fused to create a robust system.

This paper is organized as follows: Section two gives an introduction to Wavelets,
Support Vector Machines for density estimation and CUSUM. Section three shows the
drowsy driver detection proposed methodology. In section four, obtained results on
driver’s data in real conditions arc presented. Finally, section five gives some

conclusions.

2. Background

2.1. Continuous Wavelets

Wavelets, [3], allow analyzing in time and frequency the behavior of a signal. They are

able to analyze non-stationary signals, in complement of the Fourier analysis that loses
the information of temporal localization. The Wavelets analysis is based on a
convolution of a Wavelet mothery which one dilates (s) and translates (7 ), see

equation 1, to have an approximation and a decomposition of the original signal.

- 1 -7 (6]
w ()=—7w( S')
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Wavelets are known to be efficient in representing piecewise smooth functions.
Away from singularities, the inner product between a wavelet (with a number of zero
moments) and a smooth function will be either zero or very small. At singular points, a
finite number of wavelets concentrated around the discontinuity lead to non-zero inner
products. This is in contrast with Fourier series where discontinuities lead to many
larger coefficients. This ability of wavelets expansions to capture both smooth and
singular parts of a signal has been used in many applications, including denoising and
compression.

2.2. DiscreteWavelets

Calculating wavelet coefficients at every possible scale is a fair amount of work. and it
generates an awful lot of data. It turns out, rather remarkably, that if we choose scales
and positions based on powers of two - so-called dyadic scales and positions - then this
analysis is much more efficient and just as accurate. We obtain such an analysis from
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the discrete wavelet transform (DWT). An efficient way to implement this scheme
using filters was developed in 1988 by Mallat, [3). The Mallat algorithm is, in fact, a
classical scheme known. in the signal processing community, as a two-channel
subband coder. This very practical filtering algorithm yields a fast wavelet transform a
box into which a signal passes, and out of which wavelet cocfficients quickly emerge.
The filter bank is read from lefi to right. The input is a vector: perhaps arising as
samples of a continuous signal/function. This is a two-channel filter bank. In brief; its
effect is to 1) Separate the input into frequency bands: filter and downsample and, 2)
Reassemble: upsample and filter. The filters could cach be applied several times. One
applies the Ho lowpass (average) filter repeatedly at higher and higher levels, each
branch followed by one H, highpass (difference) filter. See F ig. 1. '

Hgh pass fiter Hgh pass 1o

[0 H{2)~- (2]
[ H{2)— (2]

Low poss fiter Lo poss fiter

Anglysis benk Synthesis bank

Fig. 1. Wavelet Filter Bank.

The left half of the filter bank is called the analysis bank, and its effect is to
compute the wavelet coefficients of the signal vector. The right half of the filter bank is
called the synthesis bank: it reconstructs the signal vector from the wavelet
coefTicients.

2.3. Support Vector Machines for Density Estimation

For Support Vector Machines (SVMs) in density estimation, [4]. only one class have to
be separated of the origin with an optimal hyperplane, Fig. 2. In order to build a SVM
in the density estimation problem, with a nonlinear decision function, in a nonlinearly-
separable case, one has to solve the following dual quadratic optimization (QP)
problem:

1
Maximize L,(a) = —1 Za,a,k(x,,x,)
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1
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where K(, ) is the kernel function, which makes a projection of the original space into a
space (feature space) of a higher dimension. « are the Lagrange Multipliers introduced
to transform the primal quadratic problem with linear constraints into the dual problem
showed above. The parameter v € (0, 1) establishes an upper limit of the fraction of
vectors remaining out of the learned distribution (outliers) and a lower limit of the
fraction of support vectors. The evaluation function is defined as:

! 3)
f()= 2 ak(x,x)=P
1=]

The examples X, associated with Lagrange multipliers greater than zero are called

support vectors, since they have a significant contribution in (5)- Geometrically, these
vectors are on the border of the evaluation function, see Fig. 2. Large scale learning
tasks. with more than 10000 instances, lead to a long training time and a large kernel

matrix.
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Fig. 2. Support Vector Machines for Density Estimation

Some solutions have been proposed in order to deal with this problem, [5], [6]. We
have also proposed some heuristics, [13], [14]. in order to reduce the training time.

2.4. Cumulative Sum (CUSUM)

CUSUM charts have shown to be efficient in detecting small shifts in the mean of a
process. CUSUM works as follows: Let us collect k samples, each of size n, and
compute the mean of each sample. Then the cumulative sum control chart is formed by
plotting one of the following quantities:

' m T @)
S, = Z(x,,,uo) or S, = = Z(x,,,uo)
=l

x 1=l
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Against, the sample number m, where is the estimate of the in-control mean and is the
known (or estimated) standard deviation of the sample means.

3. Methodology

Practically, a system can be diagnosed by two principal ways depending on the
available information. The first one, when a mathematical or structural model is
known, diagnosis can rely on estimation, analytic redundancy and expert systems. In
the sccond case the model is not known, so a behavioral model has to be constructed
from available observations on the system. The use of statistics. pattern recognition,
neural networks, and other methods is the principal way of parameterization of the
model. The diagnosis system has to supervise and diagnose the driver-vehicle-
environment system. As we have seen, a mathematical model of this system is quite
impossible to be constructed due to the number of factors and variables to be taken into
account. In this work, one constructs a model from observations: X in 727. each
observation represents the system state at the instant f. So. a number of observations
belonging to normal driver behavior will create a cloud of points. The general approach
is illustrated in Fig. 3. It features a Base Line Generation that computes the model
parameters off-line. Then, for the Real Time Diagnosis these parameters are used to
evaluate the driver’s performance every 50 msec. The final diagnosis deals with the

instantaneous one by statistical methods to provide a final diagnosis to the driver with a
minimum of errors.

Base Line
Generation
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Fig. 3. General Diagnosis Methodology
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A medical external expertise, based on EEG/EOG signals, is used as a target, in order
to compare the resulting system. On-board measured variables are: lateral distance,
steering-wheel angle and vehicle speed. The methodology is as follows:

1. Singularities Detection. On-board measured variables are used to compute a group
of synthetic variables. By decomposing signals into elementary building blocks that are
well localized both in time and frequency. the wavelet transform can characterize the
local regularity of signals. This local regularity is measure from the

wavelet transform modulus maxima. [10]. First. our algorithm detects singularities
(points where there are a change of the dynamics’ signal) as temporal references for
compute statistical artificial variables: average, standard deviation and the time
traversed between singularities.

5 Data fusion. The cloud of computed artificial variables is used to create a normal
class by means of the estimation of the probability density estimation function (PDF).
However. there are multiple constraints for this kind of diagnosis. To represent as
accurately as possible the normal behavior we need an exhaustive number of
observations in different states.

3. Final Decision. The final result is provided by CUSUM.

4. Experiments and Results

Field experiments are being carried-out in the SENSATION. All the experimentation
campaigns were performed using the CopiTech demonstrator vehicle. Two important
results of these experiments are, on on¢ hand, the driving behavior is personalized and
could change in time, because two drivers have different driving characteristics in
normal and abnormal modes. On the other hand, the pertinent parameters depend on
the road situation. In fact we have to distinguish between different environments.

The experimentation protocol can be seen as follows: Drivers drove twice in a day,
moming and afternoon; doing 184 km at 90 km/h each time. They have been
instrumented with electrodes with the aim of record their brain (EEG) and ocular
(EQC) activity. At the same time the medical .expert asked to the driver his state of
tiredness. In addition, all signals coming from on-board sensors were recorded and the
scene in the cockpit and the environment of the vehicle were filmed and recorded on
videocassette. Ulterior analysis of EEG and EOG allowed to known the physiological
state of the drivers. There are seven variables: three physic variables (Wheel Angle
WA. Lateral Position LP and Vehicle Speed VS) and four artificial ones (standard
deviation and frequency of WA and LP) calculated into intervals between two
singularities detected by the wavelets analysis.

4.1. Singularities Detection
The local frequency of the oscillations can be measured from the points where the

modulus of the wavelet transform is local maximum, both along the scale and the
spatial variable. As an example. we show the lateral position’s signal analysis.
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Fig. 4. Top: Analyzed signal. Bottom: Wavelet’s detail coefficients at different levels.

To compute the wavelet transform, we use a complex Daubechies wavelet, due to
the good capabilities of complex wavelets on detecting singularities, [11]. Both
calculation of Wavelets and generation of artificial variables are done for the entire
signal using fixed windows of 4046 samples, which make approximately 3.37 min for a
sampling rate of 20 Hz. Different filter bank’s output levels are shown in Fig. 4. Detail
figures show the wavelets coefficients at different scales, higher level coefficient’s
modulus maxima shows where signal singularities take place.

4.2. SVM for density estimation and CUSUM for the final diagnosis

According to the process state, we can focus on problems in the driver's attention level.
However, our interest is focused in the vigilant state. For one of the drivers, we have
identified thanks to the medical expertise that the first 55 minutes belong to a vigilant
(or normal) behavior and the rest to the hypovigilant one. For the learning process, we
made usc of the examples between 5 and 30 minutes of driving (30000 examples),
obtaining 1399 support vectors for the learning parameter v= 0.05 and a Gaussian
kemnel with o= 0.35. The results of the generalization procedure in the entire
database are shown in figure 5. It shows at the top of the figure, the medical diagnosis
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given in ten levels. The level ten belongs to a high level 'of hypovigilancF. In the
middle. we show the output of the learned SVM PDF. normalized by the function:

_ max(=f(x,0) ®)
reg
(x,) of the entire database. This function provides a classical

Probability Density Function for the hypovigilant behavior. The Iovs:cr part of the
figure shows the final diagnosis provided by CUSUM. A numerical performance is not

computed since the medical and behavioral diagnoses don’t arrive at the same time.

J(x)

where reg = f

Expen Diagnosis
"”

: ,——"\_F—r
; i g

Fig. 3. High: External diagnosis expressed in ten levels. Middle: Wavelets-SVM  punctual
diagnosis. Low: Final diagnosis by CUSUM '

5. Conclusions

This paper shows an Advanced Driver Assistance Systems (ADAS) focused in the
diagnosis of a very complex problem: the driver’s vigilance state. Several efforts are
been or have been made by several teams all over the work to propose a reliable on-
board and real time system. In this paper we have proposed a diagnosis system in order
to perform the diagnosis of a vehicle driver in real time. The use of wavelets as an
extraction methodology gives a more accurate description of the original physical
variables and then the evolution over time. Wavelets joined to the Support Vector
Machines shows its pertinence.
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